Friday, 29 July 2016

Heron's formula




In geometryHeron's formula (sometimes called Hero's formula), named after Hero of Alexandria,[1] gives the area of a triangle by requiring no arbitrary choice of side as base or vertex as origin, contrary to other formulas for the area of a triangle, such as half the base times the height or half the norm of a cross product of two sides.


Example

Let ABC be the triangle with sides a = 4b = 13 and c = 15. The semiperimeter is s = 1/2(a + b + c) = 1/2(4 + 13 + 15) = 16, and the area is
In this example, the side lengths and area are all integers, making it a Heronian triangle. However, Heron's formula works equally well in cases where one or all of these numbers is not an integer.

No comments:

Post a Comment